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Abstract. A n  important problem in quantum transport is to understand the role of dissipative 
processes. In this paper we assume a model in which phase-breaking and dissipation are 
caused by the interaction of electrons with a reservoir of oscillators through a delta potential. 
In our model the self-energy is a delta function in spaci-. leading to a kinetic equation with a 
simple physical interpretation. A novel treatment of the contacts is used to introduce the 
external current into the kinetic equation. On specializing to linear response we obtain an 
integral equation that looks like the Biittiker formula extended to a continuous distribution 
of probes. We show that this equation with a continuous distribution of probes can be 
reduced to the usual Buttiker formula which involves only the actual physical probes. The 
effect of dissipation is to modify the transmission coefficients, and we present explicit 
expressions derived from our model. Also, in a homogeneous medium the integral equation 
reduces to the diffusion equation, if the electrochemical potential is assumed to vary slowly. 
This paper serves to establish a bridge between the quantum kinetic approach which rig- 
orously accounts for the exclusion principle and the one-particle approach which is intuitively 
appealing. We believe that this work can be extended to more sophisticated models where 
the self-energy is not a delta function. 
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1. Introduction 

Much of the current theoretical work on mesoscopic structures is based on the Landauer 
approach [ l ] .  In particular, the Buttiker formula relating the currents I ,  at the probes i 
to the electrochemical potentials p, at the probesj has found widespread use [2]. 

where 

B being the magnetic field. Equation (1.1) has been related to linear response theory 
[3] and has been very successful in explaining many experimental observations [4]. 
However, there are a number of unanswered questions: 

(1) How can we compute the transmission coefficients TI] in the presence of phase- 
breakingscatteringprocesses within the device? Usually the coefficients TI] are computed 
from the one-electron Schrodinger equation assuming that transport through the device 
is phase-coherent. 

(2) How can we describe harmonic generation [SI and large signal response [6] 
including phase-breaking processes? Equation (1.1) describes linear response only. 

( 3 )  How can we compute the electron density in the device so that the electrostatic 
potential can be determined self-consistently from the Poisson equation? In linear 
response only the equilibrium electron density is needed. This can, in principle, be 
computed by multiplying the local density of states No(r; E )  with the Fermi factorf,(E); 
thus no new theory is necessary. However, for larger bias, we need the electron density 
under conditions far from equilibrium and a transport equation that accounts for phase- 
breaking processes is desirable. It would also be instructive to compute quantities like 
the current density inside the structure. 

This paper represents an attempt to provide answers to these questions assuming a 
specific model for the phase-breaking scattering processes [7, 81. A quantum kinetic 
approach is adopted so that the exclusion principle is rigorously accounted for. This 
paper thus also serves to establish a bridge between the one-electron approach commonly 
used to derive (1.1) and the quantum kinetic approach. 

The role of the distribution function in semiclassical transport theory is played by 
the correlation function G' (or the related Wigner function) in quantum transport 
theory [9-1.51. 

where v ( r ,  t )  is the electron field operator. It is common to transform to centre of mass 
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r =  ( r l  + r2)/2 t = (tl + t,)/2 (1.5) 
and relative coordinates, and then Fourier transform with respect to the relative co- 
ordinate 

rl - r2 * k ti  - t2- E (1.6) 
to obtain G<(r ;k ;E; t ) .  Quantum kinetic equations have been derived that can, in 
principle, be solved to obtain C<. Various quantities of interest such as the electron 
density and the current density can all be computed, once G< is known. In practice, the 
large number of independent variables (r;k;E;t) often make it difficult to solve the 
kinetic equation. 

The kinetic equation we derive involves only the electron density per unit energy 
n(r; E )  which is obtained by intsgrating the correlation function over k or equivalently 
by setting rl = r2 = r: 

dk  
= - iC<(r l , r2 ;E)I , ,=rz=r .  (1.7) 

The time variable t = ( t ,  + t2)/2 does not appear because of our restriction to steady- 
state. The averaging over k is made possible by assuming a special form for the phase- 
breaking scatterers. We assume that the scattering is caused by a distribution of inde- 
pendent oscillators, each of which interacts with the electrons through a delta potential. 
We also assume that the phase-breaking processes are weak and infrequent, just as one 
does in deriving Fermi’s golden rule (however, the elastic scattering processes are treated 
exactly). In the ‘golden rule’ approximation, each scatterer acts independently. Since 
we have assumed a delta interaction potential, a phase-breaking event only involves the 
wavefunction at a particular point and is insensitive to spatial correlations. This allows 
us to write a transport equation that only involves the diagonal elements G<(r,  r;  E )  of 
the correlation function which represent the electron density n(r; E )  (see equation 
(1.7)). Spatial correlations of the field represented by the off-diagonal elements 
G<(r l , r2 ;E) ,  rl # r2 do not appear in this equation. However, once we have solved this 
equation for the diagonal elements, we can also compute the full correlation function 
G<(rl, r2; E )  including the off-diagonal elements in a straightforward manner. Other 
quantities of interest such as the current densityJ(r;E) can then be computed. It will be 
noted that G<(r;k;E) is in general a complex quantity. However, the electron density 
per unit energy n(r;E) obtained by integrating over k is positive definite. We believe 
that this is related to the fact that the simultaneous use of rand kviolates the uncertainty 
principle but the simultaneous use of r and E does not. 

An obvious question to ask is whether our model for the phase-breaking scatterers 
is realistic. It closely approximates a laboratory sample with magnetic impurities or 
impurities having internal degrees of freedom. For other types of phase-breaking scat- 
tering processes, the model may not be accurate; however, it may still be possible to 
describe much of the essential physics of dissipation in quantum transport. A t  the very 
least, we have a well-defined microscopic model whose predictions can be worked out 
numerically for realistic structures and compared with experiment. This should enable 
us to identify new phenomena arising from spatially correlated inelastic scattering 
processes and many-body effects that are neglected in our model. 

The kinetic equation is further simplified by assuming that there is no carrier heating 
so that the energy distribution of carriers at any point r can be expressed in terms of a 
local electrochemical potential p ( r )  as shown in (2.11). Specializing to linear response 
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we obtain an equation for p(r )  that looks like (1.1) generalized to include a continuous 
distribution of probes. This can be understood easily following the approach used by 
Buttiker to simulate phase-breaking processes [ 161. Since the phase-breaking scattering 
process in our model is purely local, it can be viewed as an exit into a reservoir followed 
by reinjection into the main structure. From this point of view it would seem that 
distributed inelastic scattering processes can be simulated by connecting a continuous 
distribution of reservoirs throughout a structure [17, 181. A direct generalization of 
(1.11, however, would appear to be a phenomenological approach to simulating phase- 
breaking scattering. This paper provides the rigorous justification for such an approach, 
by deriving the kinetic equation directly from a model Hamiltonian making certain well- 
defined assumptions; it also provides quantitative expressions for the transmission 
coefficients and allows us to compute the full correlation function (or the Wigner 
function) from which other quantities of interest such as the electron density and the 
current density can be obtained. 

The outline of this paper is as follows. In section 2 we describe the microscopic model 
that we assume and derive the self-energy functions. In section 3 we discuss the general 
kinetic equation-its physical interpretation and how it can be solved numerically. A 
novel treatment of the contacts is then used to introduce the external current into the 
kinetic equation. In section 4 we simplify the kinetic equation assuming that the energy 
distribution of carriers at any point is described by a Fermi factor with a local elec- 
trochemical potential. We believe that this simplified equation can be used to describe 
linear and non-linear response at low bias voltages. In section 5 we specialize to linear 
response and obtain an equation that looks like (1.1) generalized to a continuous 
distribution of probes. We also show that this equation can be reduced to (1.1) and 
obtain an explicit expression for To.  Also we show that in a homogeneous medium with 
a slowly varying electrochemical potential this equation reduces to the familiar diffusion 
equation. We also address the question of whether p(r)  can be measured by a weakly 
coupled non-invasive probe. It is shown in section 5 that such a probe measures a 
weighted average of p(r )  within a region of the order of a phase-breaking length. The 
weighting function is characteristic of the probe geometry and construction. Finally we 
conclude in section 6 by summarizing the key results. In the main paper we have tried 
to emphasize the physical interpretation of the results, relegating the mathematical 
details to Appendices A to D. 

2. Microscopic model 

We consider any arbitrary structure in which the propagation of electrons is described 
by a one-electron effective mass Hamiltonian of the form 

H o  = (p - eA(r))2/2m* + eV(r) 

where m* is the effective mass. The scalar potential V(r)  contains the Hartree potential 
obtained from a self-consistent solution of the Poisson equation. It includes band- 
bending due to space charge and external bias, band discontinuities due to hetero- 
junctions, as well as all sources of elastic scattering such as impurities, defects and 
boundaries. This part of the Hamiltonian ( H o )  will be treated exactly. 
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The phase-breaking scattering is assumed to be due to a reservoir of independent 
oscillators labeled by the index m,  

H R  = 2 hom(a;i7um + t )  
n7 

where u k  and U,  are the creation and annihilation operators for oscillation m.  We 
assume that each oscillator interacts with the electrons through a delta-potential, so that 
the interaction Hamiltonian H’ can be written as 

Note that we have assumed the interaction strength U to be constant. There is no loss 
of generality since the strength of the scattering can be adjusted through the density of 
scatterers per unit volume per unit energy, described by some function Jo(r;hw).  The 
summation over m is eventually replaced by an integral. 

:+ d r j  d ( h o )  Jo(r ;hw) .  (2.4) 

A phase-breaking scattering process is usually defined as one in which the scatterer 
changes its internal state. It is well-known that phase-breaking processes are not necess- 
arily inelastic or dissipative since the final state of the scatterer could have the same 
energy as the initial state. Such elastic phase-breaking processes are included in our 
model as a special case when the oscillator frequency h o  -+ 0. Since the spectral dis- 
tribution of the oscillators Jo(r; h o )  in equation (2.4) is completely arbitrary, there is 
considerable latitude in simulating different scattering mechanisms. In our discussion 
we will not distinguish the phase-breaking elastic processes from the inelastic ones; we 
will generally refer to all processes involving the oscillators as phase-breaking processes 
and the associated time constant as the phase-breaking time. 

In calculating the self-energy we assume that the reservoir is in thermal equilibrium 
and restrict ourselves to  one-phonon processes as one does in deriving Fermi’s golden 
rule. With these assumptions, the self-energy function can be shown to be [18] (see 
appendix A, equations (A.lOa, b ) )  

- ih 
Z’(r , r ’ ;E)  = - S(r - r ’ )  

r n  (r;  E )  
ih 

Z < ( r , r ’ ; E )  = ~ S(r - r ‘ )  
rp (r ;  E )  

where 

(2.5a) 

(2.5b) 

( 2 . 6 ~ )  

(2.66) 

(2.7) 

n(r; E )  is the electron density per unit energy, whilep(r; E )  is the ‘hole’ density per unit 
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Electron 

n(r,E) +p(r:E)=N,(r;E) 

Figure 1.Out-scattering and in-scattering of elec- 
Electron 

out - scattering .1 Rn = GP = n / q, 
trons due to interaction with the reservoir of point 
oscillators. 

energy. Note that the electron density and the hole density refer to the same band. Their 
sum is equal to the density of states N o ( r ; E ) .  

n(r; E )  + p(r;  E )  = N o  (r;  E) .  ( 2 . 8 ~ )  

The density of states is obtained from the imaginary part of the retarded Green function 
(to be discussed in section 3, see equation (3 .2) ) .  

N o ( r ; E )  = -Im(GR(r,r;E))/n.  (2.8b) 

N(hw)  is the average number of 'phonons' in an oscillator of frequency w and is given 
by the Bose-Einstein factor 

It is easy to see why the self-energy functions in our model are delta functions in space. 
Since we consider only one phonon processes, the electron interacts with the same 
oscillator at randr ' .  But the interaction potential has been assumed to be a delta function 
at the location rm of the oscillator. Hence r and r' must both coincide with rm. 

The similarity of (2.6a, b )  to Fermi's golden rule will be noted. However, unlike 
the usual golden rule we are not using energy eigenstates. We are using the position 
representation and a simple golden rule-like result is not valid in general. It is made 
possible by our assumption of independent point oscillators that only see the electron 
wavefunction at one point. In this model, the phase-breaking scattering process is a 
purely local affair that shuffles the energy E of the electrons at a fixed point r .  The rate 
R,  at which electrons are scattered out of energy E at the point r (or the rate G ,  at which 
holes are scattered in) is proportional to the imaginary part of X'(r,r;E) (equation 
( 2 . 5 ~ ) ) .  

R ,  ( r ; E )  = n ( r ; E ) / r , ( r ; E )  = G p ( r ; E ) .  (2 .  loa) 

Similarly the rate R, at which holes are scattered out (or the rate G, at which electrons 
are scattered in) is proportional to the imaginary part of x < ( r , r ; E )  (equation (2 .5b) ) .  

R,  ( c E )  = p ( r ; E ) / t , ( r ; E )  = G,( r ;E) .  (2 .  lob) 

The out-scattering and in-scattering of electrons is shown schematically in figure 1. 
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It will be noted that if the energy distribution of electrons is given by the Fermi- 
Dirac factor with some local electrochemical potential p ( r )  

n(r;E)/iVo(r;E) - f ( r ; E )  = l/(e(E-ep(r))/kBT + 1) 

n(r; E ) / t ,  ( r ;  E )  = p(r; E ) l t ,  ( r ;  E) .  

(2.11) 

(2.12) 

then the out-scattering and in-scattering rates exactly balance each other. 

This is shown in section 4. 

3. Kinetic equation 

The general steady-state quantum kinetic equation has the form [ 7 ,  141 (see appendix 
B, equations (B.14) and (A.21)) 

This is the kinetic equation one would solve in general to obtain the function G<(r ,  , r2;  E )  
from which the electron density n(r; E )  and the current density J(r; E )  can be computed. 
Because the self-energy is a delta function in our model we can solve a simpler equation 
involving only the diagonal elements G<(r , r ;E)  = 2nin(r;E). Using (2.5b) for 2< and 
letting rl = r2 = r,  (3.1) simplifies to 

Once the electron density n(r; E )  has been obtained by solving (3.2) we can compute the 
full function G<(r l ,  r2; E )  from (B.15). Various quantities of interest such as the current 
density per unit energyJ(r; E )  can be obtained from G<. Later in this section an explicit 
expression J(r;  E )  will be presented. 

The retarded Green function GR(r, r’; E )  is obtained from the Schrodinger equation 
modified to include an ‘optical potential’ ZR (equation (B.13)). Because the self-energy 
is a delta function in space, Z R  is a simple local potential (equations (A.l8a,b)) which 
we write as Vop(r; E) .  

( 3 . 3 ~ )  ( E  - H”(r)  - VOp(r;E))GR(r,r’;E) = 6(r  - r’)  

h 
Im(Vop(r;E)) = - 

2t$l(r;E) 

d E ‘  
Re(V,,(r;E)) ( E  - E’) t&;E‘)  

(3.3b) 

(3.3c) 

where P represents the principal value of the integral and tP is given by the parallel 
combination of t, and z p .  

(3.3d) 

Note that the elastic processes described by H o  (equation (2.1)) are treated exactly, 
while the phase-breaking processes due to H’ (equation (2.3)) are treated approximately 
through the optical potential obtained from the lowest order self-energy function. 

I / t q ( r ; E )  = l /’ tn(r;E) + l / t , (r ;E).  
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Equation (3.2) involves only positive definite quantities. All interference effects are 
contained in the function G R ( r , r ‘ ; E )  which is obtained from (3.3).  The imaginary part 
of the optical potential ( -h /2 t , )  causes these interference effects to decay. We can thus 
identify t, as the phase-breaking time due to the interaction of the electrons with the 
bath of oscillators (this includes both elastic and inelastic processes as explained earlier 
in section 2) .  

It will be noted that t , ( r ; E )  in general is affected by the electron density n ( r ; E )  
and thus needs to be computed self-consistently. However, if the energies h o  of the 
oscillators are much less than k B T ,  then F(r;E’ - E )  = F(r ;E  - E‘)  (see equation 
(2.7));  under this condition it can be shown from (3.3c), (2.6a,b) and (2.8) that t , ( r ; E )  
depends on the total density of states N o ( r ; E )  and Got on the electron density n(r;E) .  
Consequently, a self-consistent calculation is not necessary. 

It may appear surprising that the phase-breaking time is not simply the electron life- 
time r,, but is determined by the parallel combination of t, and t p  (equation ( 3 . 3 ~ ) ) .  
This result follows rigorously from the quantum kinetic approach and could not be 
anticipated from a single-particle picture. Physically it can be understood following the 
discussion in section 4.4 of Kadanoff and Baym [9]. Phase-coherence of the one-particle 
Green function is lost if the additional electron disturbs the free evolution of the bath of 
oscillators. This can happen in one of two ways: ( 1 )  the electron can outscatter by 
interacting with the bath, or, ( 2 )  the electron can inhibit inscattering (that would 
otherwise have occurred due to interaction with the bath) through the exclusion 
principle. The former process occurs at the rate n / t ,  while the latter occurs at the rate 
n/t,-leading to an overall phase-breaking rate of n/t , .  In a dilute Boltzmann gas near 
equilibrium t, is much less than z p  (since n < p, see equation (2.12)) so that the former 
process is dominant and t@ = t,, as one would expect from a one-electron picture. 

Physical Znterpretation: Physically ( 3 . 3 ~ )  describes the propagation of electron waves 
away from a point excitation source at r ’ .  If electrons are injected at a steady rate at the 
point r’ they will propagate outwards and establish an electron density distribution 
proportional to ICR(r, r ’ ;  E)12 (figure 2) .  The imaginary part of the optical potential 
causes the wave to decay which corresponds to the loss of electrons from an initial energy 
E by phase-breaking scattering processes (it also includes the inhibited in-scattering as 
discussed earlier). The rate at which electrons are lost by scattering out of a volume dr 
is given by IGR(r, r ’ ;  ,!?)I2 dr/ tq(r ;  E) .  It can be shown that (see appendix C) 

Equation (3 .4)  shows that the total rate at which electrons are lost by scattering is equal 
to 2nNo(r’; E ) / k  This must equal the rate at which electrons are injected at r‘ as shown 
in figure 2. Thus we can write the probability P(r,  r ’ ;  E )  that an electron having an energy 
E after suffering a phase-breaking process at r’ will suffer its next phase-breaking event 
at r is given by 

P(r ,  r’; E )  = (J1/2n) (GR(r, r’;  E ) / * / N o ( r ’ ;  E ) t , ( r ;  E).  (3.5) 
The relationship expressed by (3 .4)  ensures that the probability function P(r,  r ’ ;  E )  is 
properly normalized: 

1 drP(r ,  r ’ ;  E )  = 1. (3 .6)  

The range of Ir - r’I over which the probability function P(r ,  r ‘ ;  E )  is significant defines 
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POSltlon Figure 2. Propagation of electron waves away 
from a point excitation. The  argument E has been 

+ r  

dr IGR(rr  ,I' 
Tq IO suppressed for simplicity. 

thephase-breakinglength. The probability function can also be computed semiclassically 
using a Monte Carlo approach, and a comparison of the semiclassical result with the 
quantum mechanical result could be illuminating. In fact we believe that by replacing 
lGR12 in (3.1) with the appropriate semiclassically computed quantity, it is possible to 
use the equations derived in this paper to describe semiclassical transport as well. 

We now rewrite the kinetic equation (2.2) in the form 

Equation (3.7) is readily understood if the rate G,, of in-scattering of electrons per unit 
volume per unit energy is identified with 

( 3 . 8 ~ )  

Since P(r,  r ' ;  E )  is the fraction of electrons in-scattered at r' that get out-scattered at r,  
the right hand side must equal the out-scattering rate R,  per unit volume per unit energy 
at r which we identify with 

(3.8b) 

Note that 6, and R,  are larger than the in-scattering rate G, and the out-scattering 

G,( r ;  E )  - Gfi ( r ;  E )  = R,(r;  E )  - R n ( r ;  E )  = n(r; E)/ ,c,(r;  E) .  (3.9) 
The excess scattering rate (R, - R,) or (6, - G,) is negligible for a dilute electron gas 
with n(r; E )  e p ( r ;  E )  2: No(r; E) .  But for a degenerate electron gas, n / t ,  represents 
the part of the in-scattering that is inhibited by the exclusion principle as discussed 
earlier. Equation (3.2) (which is rigorously derived in appendix B taking the exclusion 
principle into account) is thus consistent with a simple one-electron picture in which the 

G,(r;  E )  = No(r;  E ) / T , ( ~ ;  E).  

I?&; E )  = n(r; E) / , cq ( r ;  E) .  

rate R, discussed in section 2 [equation (2. loa, b)]. 
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in-scattering is not inhibited but balanced by an equal amount of out-scattering; however, 
this result is difficult to anticipate from a one-electron picture. 

Numerical Solution Procedure: We can rewrite (3.2) in the form of an integral 
equation for the electron density n(r; E ) ,  using (2.66) to replace t J r ;  E).  

n(r; E )  = dr’  d E ‘  K,,(r, r’;  E ,  E’)n( r ’ ;  E’) .  (3.10) I I  
The kernel K,, is given by 

K,,(r ,  r ‘ ;  E ,  E‘)  = lGR(r, r ‘ ;  E)I2 F(r’, E - E’) (3.11) 

Once the kernel has been computed from (3.3), we can solve (3.10) with the appropriate 
boundary conditions to obtain the electron density n(r; E )  everywhere in a given struc- 
ture. We assume that the structure contains two or more contact regions where the 
electron density is given by a Fermi distribution with a given local electrochemical 
potential p (figure 3). We can then discretize the variables ( r ;  E )  into, say, Nnodes over 
the rest of the structure (labelled ‘device’). Equation (3.10) yields one equation at each 
node, leading to N equations for the N unknowns (values of n(r; E )  at the N nodes). It 
will be noted that the kernel, in general, depends on the electron density n(r; E )  and 
may have to be computed self-consistently. This is because GR(r, r ’ ;  E )  depends on the 
Hartree potential. It also depends on t q ( r ;  E )  (equation (3.3)) which, in general, is 
affected by n(r; E ) ;  however, tp(r; E )  is nearly independent of n(r; E )  if the energies 
ho of the oscillators are much less the kgT,  as discussed earlier in section 3. 

It can be shown that (3.10) is satisfied by the equilibrium solution n(r; E )  = No(r; E )  
fo (E)  where f o (E)  is the Fermi distribution with a spatially constant electrochemical 
potential po. This is the solution we expect to obtain if we solve (3.10) assuming that all 
the contacts are at the same potential p = po. 

The current density is obtained from the off-diagonal elements of the Green function 
G<(r l ,  r,; E )  as described in appendix B (equations (B.21,24)). 

J(r;  E )  = - Js(f-3 r ’ ;  E )  2n I t p ( r ’ ;  dr’ E )  (3.12) 

where 

Ja(r, r ’ ;  E )  = ICR(r, r ’ ;  E)I2 (e /m*)(f iVO(r,  r ’ ;  E )  - eA(r)) (3.13) 

and 

GR(r, r ’ ;  E )  = /GR(r, r ’ ;  E)l exp(iO(r, r ’ ;  E ) ) .  (3.14) 

V denotes the gradient operation with respect to r.  It can be shown that this expression 
for the current density is gauge-invariant; that is, if we change the vector potential from 
A(r)  to A(r)  + Vx(r) ,  ~ ( r )  being any scalar function, the current density is unchanged. 
Using (2.66) for ~ ~ ( r ’ ;  E )  we can write (3.12) in a form similar to (3.10). 

J(r;  E )  = 1 dr’  J d E ’  KJ(r,  r ‘ ;  E ,  E’)  n(r’; E ’ )  (3.15) 

The kernel Kj  is given by 

KJ(r,  r’; E ,  E’) = ( e /m)K, ( r ,  r’; E ,  E’) (fiVO(r, r ’ ;  E )  - eA(r)) .  (3.16) 

Once the electron density n(r; E )  has been obtained throughout the structure from 
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Contacr 
Device 

Figure 3. The structure is assumed to contain two 
or more contact regions (four shown in the figure) 
where the electron densify n(r;  E )  is given by a 
Fermi distribution with a local electrochemical 
potential p .  The electron density is free to assume 
any form in the rest of the structure, labelled as 
‘device’. The four contacts supply currents I , ,  f 2 .  

I ?  and I 4  to the device through the surfacesS,, S 2 ,  
S3 and S4 respectively. 

(3. lo), we can compute the current densityJ(r; E )  by performing the integral in (3.15). 
The external current Ii coming in from contact i is obtained by computing the flux passing 
through the surface Si (figure 3). 

I, = d E  J(r;  E )  . dS,. (3.17) 

It will be noted that the current density is zero deep inside the contact since we have 
assumed the electrochemical potential to be constant over the entire contact. This is not 
what happens in a real contact where the electrochemical potential is not constant but 
varies linearly. Current flows into the contact from one end and out the other end into 
the device. But in our solution the potential is assumed constant and no current flows 
into the contact. Instead it appears magically inside the contact within a phase-breaking 
length of the device (where the divergence of the current density is non-zero) and flows 
into the device through S,. For this reason, one should not attach any physical significance 
to the current density J(r;  E )  that we compute inside the contact using the solution 
procedure described above. But we believe that this procedure yields the correct terminal 
current as well as the correct electron density and current density within the device 
(provided the contacts are conductive enough that the potential drop inside them is 
negligible over a phase-breaking length). 

The solution procedure described above is similar to the procedure one would adopt 
if the structure shown in figure 3 were a classical resistor with a conductivity B. First, one 
solves the diffusion equation V*(aVp) = 0 subject to the boundary condition p = pn 
at contact n;  this is analogous to solving (3.10) subject to the appropriate boundary 
condition for n(r; E ) .  Next, one computes the current density from the relation J(r)  = 
-oVp(r) ,  B being the conductivity of the sample; this is analogous to computingJ(r; E )  
from (3.15). Finally, the terminal current at contact i is obtained by computing the flux 
through the surface S ,  (cf. equation (3.17)). In this case too the current density is 
zero inside the contact and suddenly acquires a non-zero value inside the device; the 
divergence of the current density is thus non-zero at the device-contact interface. 

External Current: If we are not interested in the detailed current distributionJ(r; E )  
within a device, then we can compute the external currents I ,  in a simpler manner 
using the procedure described below. This alternative approach also helps establish a 
connection with the Buttiker formula in the linear response regime. 

J J  

First we substitute (3.12) into (3.17) to write 

(3.18) 

Next we use the following result (see appendix C,  equations (C.15~7, b)) .  
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j J o ( r ,  r’; E )  * dSi  = 

Qi is the volume of contact i. Equation (3.19) is easy to understand physically. The left 
hand side represents the current crossing the surface Si due to a delta function source at 
r‘. This must equal the rate at which electrons are lost by scattering (see discussion 
following (3.4)) on the side of Si away from the source. Thus, if r’ lies outside the contact, 
we integrate /GRI2/z, inside the contact and vice versa. Using (3.19) and (3.5) we can 
rewrite (3.18) as 

Equation (3.20) is understood physically as follows. The rate at which electrons are in- 
scattered at r is given by N,/t,; a fraction P( r ’ ,  r ;  E )  of these electrons suffer their next 
scattering at r‘. The first term of the integrand in (3.20) thus represents the number of 
electrons per unit time that suffer a phase-breaking scattering at rand their next phase- 
breaking scattering at r’. Since r lies within contact i and r’ lies outside contact i, we can 
view this as the current flowing out of contact i. Similarly the second term represents the 
current flowing into contact i. Their difference yields the net current flowing from contact 
i into the device. 

We can remove the restriction over the range of integration for r‘ in (3.20); this is 
because if both r and  r‘ lie inside Qi then the integral vanishes: 

Within the contacts the carriers are distributed in energy according to the Fermi dis- 
tribution, so thatplt ,  = n/z,) (equation (2.12)); henceNo/tp = n/ tcp .  Using this relation 
and the normalization condition for the probability function (equation (3.6)), we can 
write (3.21) as 

(3.22) 

where 

(3.23) 

Note that within the device I(r; E )  is equal to zero, since the kinetic equation that we 
solve for the electron density n(r; E )  requires the right-hand side to be zero (see equation 
(3.7)). But inside each contact, the kinetic equation is not satisfied, since we impose a 
boundary condition on n(r; E )  rather than solve for i t .  It can be shown, however, that 
Z(r;E) is zero deep inside the contact where the electrochemical potential is constant 
for all values of r’ for which the function P(r, r’; E )  is significant. But Z(r; E )  is non- 
zero inside the contact over a region lying within a phase-breaking length (that is, the 
range of lr-r’l over which the probability of function P(r,r’;E) is significant) of the 
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device. This is precisely the region where the current density diverges, as discussed 
earlier following (3.17). Indeed, the right hand side of (3.23) is equal to the divergence 
of the current density and by integrating it over the contact as indicated in (3.22) we 
obtain the net current flowing into the contact. As we discussed earlier, our imposed 
boundary condition with a constant electrochemical potential is not quite right-the 
actual potential has a small slope due to the finite conductivity of the contacts. If we 
make the contacts more conductive by making them wider, then our assumed contact 
boundary conditions become more accurate and we would expect I(r; E )  to approach 
zero. However, at the same time the volume of integration 52, in (3.22) becomes larger 
and we believe that the terminal current I ,  will approach a constant value. The same is 
true if we make the contacts more conductive by increasing T~ in these regions. Once 
again I(r; E )  decreases but the volume of integration in (3.22) is effectively increased 
since the phase-breaking length increases. 

We emphasize that the function I(r; E )  should be viewed as one that yields the correct 
terminal current when integrated over the contact volume Q, (equation (3.22)), but no 
physical significance should be attached to its precise spatial form. 

Using equations (2.6b) and (3.5) we can rewrite (3.23) in the form of an integral 
equation with a source term. 

(3.24) 

The kernel K is given by (3.11). Within the device, I(r; E )  = 0, so that (3.24) is the same 
as (3.10) and can be solved numerically in the same way to obtain the electron density 
at all points. We can then compute f ( r ;  E )  in the contact regions from (3.24) andintegrate 
it over each contact and over all energies (as indicated in equation (3.22)) to obtain the 
corresponding external current. We have thus included the external current by modifying 
the kinetic equation (3.10) into (3.24). Note that for the classical resistor too we could 
modify V (aVp) = 0 into V. (oVp) = I ( r )  and obtain the external current by integrating 
I(r)  over the device-contact interface region. 

4. Low-bias conditions 

We will now specialize to biasing conditions that are low enough that ‘carrier heating’ is 
insignificant, We assume that we can write the energy distribution of electrons every- 
where in the form shown in (2.11) which we restate here for convenience: 

It follows that 

At equilibrium with no bias applied the electrochemical potential p(r)  is constant 
everywhere, and the ansatz in (4.1) is clearly valid. Preliminary numerical simulations 
suggest that (4.1) remains accurate as long as the potential drop over an inelastic 
scattering length is a small fraction of kBTand there are no sharp resonances in energy. 
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We leave it to future work to establish the precise criteria for the validity of this ansatz 
and to determine if this is a necessary condition for linear response. 

It will be noted that although we are assuming that carriers at different energies are 
distributed according to the Fermi distribution, we are not making any assumption 
regarding the distribution of carriers among different current-carrying states at the same 
energy. It is apparent from (1.7) that the electron density n(r; E )  is the total number of 
electrons integrated over all directions of the k-vector. No assumption is being made 
regarding G<(r; k;  E ) ,  that is, regarding the distribution of electrons along different 
directions in k-space. 

It is intuitively appealing to define two electrochemical potentials pL, pR for states 
carrying current to the left and to the right respectively [19]. The electrochemical 
potential defined by us corresponds to the average of the two and we do not wish to 
imply that pL = pR. To avoid this implication we will not refer to the above assumption 
(equation (4.1)) as 'local thermodynamic equilibrium' as we did in our earlier work 
17,8, 181. 

We believe that the concept of pL and pR can only be defined in an average sense 
over a de Broglie wavelength while the total electrochemical potential p(r )  defined 
by us is a valid concept in a local sense. This is because if we compute the 'left-moving' 
electron density nL(r ;E)  at a point by integrating G'(r;k;E) over kZ > 0, the re- 
sult is not necessarily positive. Only by averaging over some volume (having 
dimensions -de Broglie wavelength) can we ensure apositive result. On the other hand, 
the total electron density n(r;  E )  obtained by integrating G'(r;k; E )  over all kis positive 
definite and can be used to define a local electrochemical potential p ( r ) .  

We will first show that when the electron energy distribution is given by (4.1), the 
following relation is true: 

l / t p ( r ;  E )  = f ( r ;  E ) / t & ;  E) .  (4.3) 

This relation will then be used to simplify (3.23). To obtain (4.3) we note that from (4.1) 
and (4.2) 

n(r;  ~ ) p ( r ;  ~ ' ) / p ( r ;  ~ ) n ( r ;  E ' )  = e(E'-E)/kBT. (4.4) 

On the other hand from (2.7) 

(4.5) F(r; E - E') /F(r ;  E' - E )  = e(E'-E)/kBT 

Hence from (4.4) and ( 4 3 ,  

n(r; E)F(r; E' - E ) p ( r ;  E ' )  = p ( r ;  E)F(r; E - E')n(r;  E') .  (4.6) 

Integrating both sides over E' and using (2.6~2, b )  we obtain (2.12) which is restated here 
for convenience: 

n(r; E ) / G ( r ;  E )  = p ( r ;  E ) / t p ( r ;  E) .  

f ( r ;  E ) / %  ( r ;  E )  = (1 - f ( r ;  E ) ) / z ,  ( r ;  E ) .  

(4.7) 

Using (4.1) and (4.2) we can rewrite (4.7) as 

(4.8) 

Equation (4.3) follows from (4.8) noting that zy ,  is the parallel combination of zp  and t, 
(equation (3 .3~) ) .  
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Using (4.3) we can rewrite (3.23) as 

T(r; E)f(r;  E )  - dr’  T(r,  r ’ ;  E)f(r’;  E )  (4.9) I 
where 

T(r,  r ’ ;  E )  = h?lCR(r, r ‘ ;  E ) / ? / t , ( r ;  E) rq ( r ’ ;  E )  

T(r; E )  = hN, ( r ;  ~ ) / t ~ ( r ;  E) .  

(4.10) 

(4.11) 

Using (3.4) and the relation GR(r, r ’ ;  E)la = CR(r’, r; E)I-B (see appendix C), it can be 
shown that the quantities T(r,  r ’ ;  E )  and T(r;  E )  obey relations very similar to (1.2) and 
(1.3) [18]: 

F(r; E )  = dr ‘  T(r,  r ’ ;  E )  = dr’  T(r‘ ,  r ;  E )  (4.12) 

(4.13) 

Note, however, that while (1.1) describes linear response only, (4.9) is capable of 
describing non-linear response as well. In (1.1) the coefficients TI, are evaluated at 
equilibrium. But in (4.9) the coefficients T(r,  r ’ ;  E )  are computed in the presence of an 
applied bias. Consequently T(r,  r ’ ;  E )  can be different for positive and negative bias for 
asymmetric devices, and the current Z for a positive bias V may have a very different 
magnitude compared to that for a negative bias, leading to the generation of even 
harmonics. By contrast the TI, in (1.1) are equilibrium quantities independent of bias. 
Consequently the current response to an applied bias is precisely linear. In the next 
section we will specialize (4.9) to linear response. 

The expression for the current densityJ(r; E )  (equation (3.12)) can also be simplified 
using (4.3). 

I I 
T(r,  r ’ ;  E)iB = T(r’, r; I Z 1 - B .  

d r ‘  TJ(r, r’;  E )  f ( r ’ ;  E )  (4.14) 

where 

TJ(r,  r’;  E )  = T(r,  r’;  E ) t ,  ( r ;  E ) ( e A ( r )  + hVO(r, r ’ ;  E)),”*. (4.15) 

5. Linear response 

Using the property expressed by (4.12) it can be shown that the distribution function 

f ( r ;  E )  = f , ( E )  = l /(e(E-eu(l)/kBT + 1) (5.1) 

with a spatially constant electrochemical potential ,uo satisfies (4.9) with Z(r; E )  set equal 
to zero. This is the equilibrium condition. In linear response theory it is assumed that 
the distribution function f ( r ;  E )  deviates only slightly from the equilibrium distribution 
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f o ( E )  so that we can expandf(r; E )  in a Taylor series about p = p”.o. Noting that 8/d,u = 
-ed/aE,  we obtain 

f(r;  E )  = f o ( E )  + (-  a f o / W  e(,u(r> - P o ) .  (5.2) 

Substituting (5.2) into (4.9) and integrating over the energy E ,  we obtain 

f ( r )  = - h T,(r),p(r) - i dr’ To(r ,  rr)p(r’)) 
e 2  i (5.3) 

where 

To(r ,  r ’ )  = d E  - - T(O)(r, r ’ ;  E )  f i 3 (5.4u) 

(5.4b) 

f(r) = d E Z(r; E )  (5.4c) J 
The superscript 0 indicates that the quantities T(r,  r’ ; E )  and F(r; E )  are evaluated under 
equilibrium conditions. It is evident that the quantities To(r,  r ’ )  and To(r) obey relations 
similar to (4.12) and (4.13). 

Ttl(r) = i dr‘ To(r, r’) = dr ’  To(r’, r)  i (5 .5a)  

It will be noted that under bias there is a change 6 y  in the electrostatic potential which 
causes the coefficient T to change from its equilibrium value T(’). This leads to a first- 
order term of the form 

6To(r)po - dr‘  6To(r,r’)pu J 
in (5.3); however, the relation ( 5 . 5 ~ )  ensures that this term is zero. Higher-order terms 
involving quantities like 6To& are neglected in the linear response regime. Equation 
(5.3) has the appearance of (1.1) extended to a continuous distribution of probes. The 
expression for the transmission coefficient T(r,  r ’ ;  E )  from r’ to r (equation (4.10)) is 
understood easily from this point of view. The probability of injection from the probe 
at r’ is proportional to l/rp(r’; E ) ,  that of propagation from r’ to r is proportional to 
IGR(r, r ’ ;  E)I2 and that of ejection into the probe at r is proportional to l / rq( r ;  E).  In 
fact the same expression is obtained if we start from the Kubo formula for the non-local 
conductivity tensor a(r, r ’ ;  E )  and use the Fisher-Lee formula [20] to obtain T ( r ,  r‘ ; E )  

Equation (5.3) is solved numerically in the same way as the general transport equation 
(3.24). We assume ,u(r) to have specified values in the contacts and solve (5.3) within 
the device (with f ( r )  = 0) to obtain ,U(.). We then evaluate [(r) in the contactsfrom (5.3) 
and integrate it over each contact to obtain the corresponding terminal current. Knowing 
p ( r )  we can also compute the current density throughout the structure from (4.14). 
Using (5.2), (4.14) can be simplified to obtain the linear response current density; the 

[181. 
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equilibrium current densityJ(r; E )  is not zero in general, although it can be shown that 
the flux crossing any of the surfaces Si is zero at equilibrium. 

( 5 . 6 ~ )  

(5.6b) 

Note, however, that the equilibrium current density 

J,, = dr ’  TJ(r , r ’ ;E) foE  i 
is not zero in a magnetic field. The change 6cp in the electrostatic potential under bias 
causes a first-order change in this equilibrium current density: 

dJ,, = dr ‘  6TJ(r,r’;E)fo(E). J 
Strictly speaking, this is also part of the linear response current density; however, we 
have not included it in (5.6) because it does not contribute to the terminal current. 

Buttiker Formula: We will now reduce (5.3) to the same form as (1.1) and obtain 
explicit expressions for the transmission coefficients. As we have discussed, within the 
structure there are ‘contact’ regions where the electrochemical potential has a constant 
value; the rest of the structure is labeled the ‘device’ (figure 3). Integrating (5.3) over 
all r included in contact i, we obtain the total current Zi coming into contact i. 

where 

(5.10) 

When we neglect phase-breaking processes within the device the last term in (5.7) is 
zero (see equation (4.10)) so that (5.7) reduces to the same form as (1.1). We will show 
below that in general we can eliminate p(r)  from (5.7) to write it in the same form as 
(1.1): 

(5.11) 

where 

T ,  = To( i ,  j )  + TY) + T f )  + . . . (5.12) 
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device 

T,j2' Figure 4. Interpretation of successive terms in 
(5.12). 

(5.13~) 

and so on. This result may be viewed as ageneralization of the result obtained by Buttiker 
for a single floating probe [21]. The successive terms in (5.12) are shown schematically 
in figure 4. The first term To(i, j )  is the probability of coherent transmission from contact 
j to contact i without suffering any phase-breaking scattering within the device. The next 
term Tbl) is the probability of transmission with one phase breaking scattering event at 
some point r l  within the device; T Y )  is the probability of transmission with two scattering 
events at r l  and r2 within the device; and so on. It can be shown that the coefficients T,, 
and To(i) indeed satisfy the relations (1.2) and (1.3). 

To obtain (5.11) from (5.7) we note that within the device, the current I(r)  = 0 so 
that 

0 = To(r)p(r) - To(r,j)Pj - dr '  To(r9 r ' )p ( r ' )  r E device (5.14) 

or equivalently 
i r' E device 

(5.15) 

Equation (5.15) can be solved to obtain the electrochemical potential p ( r )  everywhere 
in the device in terms of the potentials p j  in the contacts. The solution can be written in 
the form of an iterative series as follows. 

p(r)  = p y r )  + p y r )  + . . . (5.16) 

where 
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Figure 5 ,  A weakly coupled probe connected to a 
device floats to a potential pPmbe that is a weighted 
average of the potential p ( r )  existing within a 
phase-breaking length L,. 

(5.17a) 

(5.17b) 

etc. Substituting p(r) from (5.16) and (5.17a, b )  into (5.7) we obtain (5.11). 
Diffusion equation: We would also like to point out that in a homogeneous medium 

without any magnetic fields, we can reduce the linear response equation (5.3) to the 
familiar diffusion equation, if p ( r )  is assumed to vary slowly. The integral operator on 
the right hand side of (5.3) then reduces to the Laplacian operator as shown in appendix 
D. 

V J = aV2p(r) (5.18) 

where 

o = d l d p p ; T ( p ) .  2h (5.19) 

We have written p for r - r ’ ,  noting that in a homogeneous medium T(r,  r’) depends 
only on the difference coordinate r - r‘ .  Here J(r)  is the current density in the structure, 
whose divergence equals Z(r). 

What potential does a ‘non-invasive’ probe measure? In this paper we have defined 
the electrochemical potential p ( r )  rigorously in terms of the electron density per unit 
energy n(r;  E )  (which is obtained from the diagonal element of the Green function 
G<(r , ,  r2; E ) ,  assuming that carriers are distributed in energy according to a Fermi 
distribution (equation (2.11)). An interesting question is whether this local elec- 
trochemical potential p(r) can be measured using a ‘non-invasive’ probe [22].  We assume 
that the probe is coupled weakly enough that it does not perturb the solution to (5.3) 
within the device appreciably (figure 5); that is, the local electrochemical potential p ( r )  
is assumed to stay the same with and without the probe. The potential Clprohe to which 
the probe floats is obtained from (5.3) by integrating over all r E probe and setting the 
current equal to zero. 

= pprohe 1 d r  T,(r)  - 1 dr 1 dr’ To(r ,  r’)p(r’)  (5.20) 
rEprohe r E  probe 

Hence. 
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(5.21) 

where 

(5.22) 

Note that (5.21) can be viewed as an extension of Buttiker’s result (equation (1) of [22]) 
to a continuous distribution of reservoirs. Equation (5.21) shows that the potential pprobe  

measured by the probe is a weighted average of the potentials p ( r )  in different parts of 
the structure. The weighting is determined by the probe functionp(r) which represents 
the fraction of carriers entering the probe that suffered their last phase-breaking scat- 
tering at r .  Since T”(r,  r ’ )  is proportional to ICR(r, r ‘ ) / *  which decays within a phase- 
breaking length L,, Clprohe is affected only by the potentials within a distance L,. If the 
potential varies slowly within this distance then there is no ambiguity in the measured 
potential ,uprobe. But if the potential varies significantly within a phase-breaking length 
then the potential pprohe that a probe measures depends on the probe functionp(r) which 
depends on the probe-geometry and construction. 

6 .  Summary 

Starting from a model Hamiltonian we have derived a simple kinetic equation that can 
be solved (self-consistently with the Poisson equation) to obtain the electron density per 
unit energy n(r;  E )  in an arbitrary structure (equation (3.24)). 

Z(r; E )  = 
e 

in(.; E )  - 1 dr‘  j d E ‘  K ( r ,  r ’ ;  E ,  E’)n(r’: E‘ )  
@ ( r ;  E )  

We assume that the structure contains two or more contact regions where the electron 
density is given by a Fermi distribution with a local electrochemical potential (figure 3). 
We then solve (6.1) in the rest of the structure (with Z(r; E )  = 0) to obtain the electron 
density n(r; E) .  Next we evaluate Z(r; E )  in the contact regions from (6.1): integrating 
it over the volume of each contact and over all energy we obtain the corresponding 
terminal current (see equation (3.22)). Knowing the electron density n(r; E )  we can also 
compute the current density J(r;  E )  throughout the structure using (3.15). 

If we assume that the electrons are distributed in energy according to the Fermi 
distribution (see equation (4. l)), then (6.1) can be simplified to decouple quantities at 
different energies (equation (4.9)). 

Z(r; E )  = - T(r; E)f(r;  E )  - dr’ Z(r, r ’ ;  E)f(r’;  E )  . (6.2) h ‘i J i 
Equation (6.2) can be solved in the same way as (6.1) for the distribution function 
f(r; E )  n(r,  E)/No(r;  E ) ,  No(r;  E )  being the density of states. Note that (6.2) is stili a 
non-linear transport equation: the coefficients T(r,  r’ ; E )  are not equilibrium quantities, 
but are evaluated under the appropriate biasing conditions. Once (6.2) has been solved 
forf(r;  E )  the current density can be computed from (4.14) 
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Next we specialize (6.2) to linear response and obtain an equation that has the 
appearance of (1.1) extended to include a continuous distribution of probes (equation 
(5.3)). 

This equation is solved numerically in the same way as (6.1). We assume p(r)  to have 
specified values in the contacts and solve (6.3) within the device (with Z(r) = 0) to obtain 
p(r ) .  We then evaluate Z(r) in the contacts from (6.3) and integrate it over each contact 
to obtain the corresponding terminal current. Knowing p ( r )  the current density within 
the structure can be computed from (5.6). 

Next we show that (6.3) can be reduced to (1.1) and obtain an explicit series solution 
for the coefficients T,, appearing in (1.1). Also it can be shown that in a homogeneous 
medium with a slowly varying electrochemical potential, (6.3) reduces to the diffusion 
equation in the absence of magnetic fields. 

The simplicity of our model leads to a clear physical picture of the transport process 
and establishes a bridge between the rigorous quantum kinetic approach and the intuit- 
ively appealing single-particle approach. The kinetic equation is simple enough that 
numerical solutions (self-consistently with the Poisson equation) seem feasible for 
practical structures. By comparing the predictions of our model with experiment it 
should be possible to establish the limitations of our model and identify new phenomena 
arising from spatially correlated phase-breaking processes and many-body effects that 
are neglected in the model. The basic approach can be applied to more sophisticated 
models including spatially correlated phase-breaking processes and many-body effects 
where the self-energy is not a delta function. The only difference is that the kinetic 
equation will involve not only the diagonal elements of the Green function but also 
the off-diagonal elements (see equation (3.1)). This makes it more difficult to obtain 
numerical solutions and also complicates the physical picture of the transport process. 
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Appendix A. Derivation of self-energy functions 

Our main objective in this appendix is to derive (2.5a, b )  and (2.6a, b).  We will also 
derive the retarded and advanced self-energy functions which are used in appendix B,  
We start from the relations [12] 

(A. l a )  

(A. lb)  

Z'(X1, X,> = G'W, 9 X 2 ) D > ( X ,  3 X 2 )  

Z<(Xl,  X , )  = G < ( X ,  3 X2P'(X,> X * ) .  

Here Xstands for ( r ,  t ) .  The electron Green functions G', G" are defined by 
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(A.2a) 

(A.2b) 

(A.3a) 

(A.3b) 

~ > ( ~ 1 3 ~ 2 )  = u2 IC a(r1 -rm)a(r2 - r n ) ( ( a ~ ( l l )  + a m ( t l > ) ( a ~ ( t 2 >  +an(t2))) .  
07.n 

('4.4) 
We assume that the reservoir of oscillators is in a state of thermodynamic equilibrium, 
so that 

(aL( t , )a , ( t2) )  = a,, N(hw,) e'wJfl-rz) (A.5a) 

( ~ , ~ ( t ~ ) a ~ ( t ~ ) )  = 6,,(N(hw,) + 1) e-"'Jfl-'?) (A.56) 

(am( t l )a , ( t z ) )  = 0 (A.5c) 

( a ~ ( t ~ ) a : ( t , ) )  = 0 (A.5d) 

where N(hw,,) is the average number of 'phonons' in a oscillator of frequency om and is 
given by the Bose-Einstein factor 

~ ( h w )  = l/e*'''kBT - 1 >. (A. 6) 

Using (A&-d) we obtain from equation (A.4), 

D > ( X 1 ,  X 2 )  = U26(r l  - r 2 )  2 6(r l  - r , )  [N(hw,) e " " ~ ~ ~ ( f I - r ~ ~  
m 

I .  (A.7) + (N(ho , )  + 1) e-7cudf1-'d 

Replacing the sum over m by an integral (equation (2.4)) and Fourier transforming 
tl - t2+ E we have, 

N(lEl) E < O  

r 2 )  { N ( E )  + 1 E > 0. 
D > ( r l ,  r 2 ;  E )  = 2nhU2J0(r1; l&l)6(r1 - (A.8a) 

Similarly it can be shown that 

To calculate the self-energy functions we Fourier transform (A. la ,  b) 

dE'  
G > ( r l ,  r 2 ;  E ' ) D > ( r , ,  r 2 ;  E - E ' )  (A.9a) 

d E' 
- G < ( r , ,  r 2 ;  E ' ) D < ( r l ,  r 2 ;  E - E ' ) .  Z < ( r l ,  r 2 ;  E )  = (A.9b) i 2nh 

Using (A.&, b) we obtain from (A.9a, b), 
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X > ( r I ,  r , ;  E )  = ( -ih/t,,(r1 ; E ) )  6(r ,  - r 2 )  

X < ( r l ,  r2; E )  = ( ih / tp ( r l ;  E ) )  6 ( r l  - r 2 )  

where 

1 
d E‘ F(r; E‘ - E)p(r ;  E ’ )  

(A. loa) 

(A. lob) 

(A. l la )  

1 
- = ’ d E’ F(r; E - E’)n(r; E ’ )  (A.1lb) q r ;  E) h 

Here we have used the relations 

n(r; E )  = -iG<(r,  r; E) /2n  

p(r ;  E )  = iG>(r ,  r;  E)/2n.  

(A.12) 

(A. 13a) 

(A. 13b) 

We have also used (A.6) in writing (A.12). 
Finally we will evaluate the retarded and advanced self-energy functions CR and CA: 

(A.14a) 

(A.14b) 

P ( x ~ ,  x,) = e( t ,  - t ,) ( ~ > ( x ~ ,  x,) - ~ < ( x ~ ,  x,)) 
Z A ( X , , X , )  = e([,  - t1)(.qx1,x2) - ~>(x~,x,)) 

Fourier transforming with respect to ( t l  - t,) we have 

+ =  d E ’  C’(r1, r , ;  E’)  - X < ( r l ,  r , ;  E’)  
(A.15a) E - E’ + ie 

XR(r , ,  r 2 ;  E)  = i 

+ =  dE‘ Z < ( r , ,  r , ;  E’)  - C > ( r , ,  r 2 ;  E’ )  
. (A.15b) E - E‘ - i E  

ZA(r l ,  r 2 ;  E) = -i 

Using (A.lOa, b) we obtain from (A.15a), 

h d E’ 1 
2n 

C R ( ~ ~ ,  r , ;  E )  = - 6(r l  - r2> j 
E - E’ + ia ty; (rl ; E’)  

(A.16) 

where 

l / t q ( r ;  E )  = l / t , , ( r ;  E )  + l / t , , (r;  E) .  (A.17) 

Hence, we have, 

Im(CR(ri 9 r2; E ) )  = ( - h / 2 2 ,  (ri ; E) 6(r ,  - r2) 

Re(CR(rl, r , ;  E ) )  = a(rl ; E)6( r ,  - r 2 )  

(A.18a) 

(A. 18b) 

where 

dE’ 
( E  - E ‘ ) t v ( r ;  E ’ )  (A.19) 

P represents the principal value of the integral. 
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The advanced self-energy function can be obtained from the relation 

ZA(r l , r2 ;E)  = ( Z R ( r , , r l ; E ) ) * .  (A.20) 

This is a general relationship between advanced and retarded functions that holds for 
the Green function as well: 

(A.21) 

To obtain (A.20) or (A.21) we note that from the definition of G‘(X,, X,)  in (A.2) we 
have 

G A ( r l ,  r , ;  E )  = ( GR(r,, r1 ; E ) )  * 

G<(Xl,  X , )  = ( i / W V + ( X 2 ) V ( ~ d  = -[(i/h)(Vl:(X,)V(Xz))I* = -[G‘(X,, XI)]*. 
(A.22) 

Since the Green functions depend only on the time differences r = t l  - t,, we can write 

G < ( r l , r z ; r )  = - ( G < ( r , , r l ;  - t ) )*  (A.23) 

Hence, on Fourier transforming 

G < ( r l ,  r , ;  E )  = - (G<(r2 ,  r , ;  E))*  

The same relation holds for G’ as well: 

G ’ ( r , , r , ; E )  = - (G’(r , , r1;E))* .  

(A.24a) 

(A .24b) 

Subtracting (A.24a) from (A.24b) we obtain 

G’(r1 , r , ;E)  - G < ( r 1 , r , ; E )  = ( G < ( r * , r l ; E )  - G > ( r * , r , ; E ) ) * *  (A.25) 

Equation (A.21) is readily obtained using (A.25) and noting that GR and CA are related 
to G’ and G< through relations analogous to (A.15a, b)  for the self-energy functions. 
Equation (A.20) can also be obtained in a similar fashion. 

Appendix B. Derivation of the kinetic equation 
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G ~ ( x , ,  x,) = q t ,  - C ~ ) C < ( X ~ ,  x2)  + e(t2 - t l ) c > ( x , ,  x,). (B.3d) 
The bracket (. . .) denotes an average over the available states of the system, that is, a 
trace over the reservoir states. The self-energy function Z is also a (2 x 2) matrix of the 
same form as G. Go is the unperturbed Green function. In addition to the four functions 
defined in equations (B.3a-d) it is convenient to define a retarded and an advanced 
Green function as follows: 

(B.4a) 

(B.4b) 

The retarded and advanced self-energy functions ZR, ZA are also defined accordingly 
(see appendix A). 

GR(X1, X , )  = e(ti - t2)(G>(Xi7 X?) - G'(Xi, X,)) 
G A ( X , , X , )  = O ( t 2  - t l ) (G<(X, ,X , )  - G > ( X , , X ? ) )  

To derive the kinetic equation we start from (B.l) noting that 

(ih d/ati - Ho(ri))Go(Xi, X,)  = S3(Xi - X2)l 03.5) 
where I is the2  x 2 identify matrix. Operating on (B. l )  with ih a / d t ,  - H u ( r l )  and using 
(B.5) we obtain 

( i h z  - H o ( r l ) )  G(X1, X 2 )  = a4(X1 - X2)l + i dX, Z(XI, X3)G(X3, X,) 03.6) 

Each element in (B.6) is a (2 X 2) matrix, so that it is equivalent to four separate 
equations. We consider only the component involving G< on the left. 

( i hL-Ho( r l ) )  G'(Xl ,X2) = / d X ,  (ZT(X1,X3)G'(X3,X2) 

a 

at1 
- Z < ( X 1  3 X3)G'(X3, X 2 ) ) *  (B.7) 

We note that 
WX1, X , )  = O(t1 - t,)X>(XI, X,) + O(t, - t* )c<(Xl  7 X , )  

= ZR(X1, X , )  + Z<(X1, X3) 03.8) 
where the retarded self-energy function CR was defined earlier (equation (A. 14a)). 
Also, 

GT(X3 9 X 2 )  = - t2)C<(X3 7 X 2 >  + - t3)G>(X3 9 X 2 )  

= -GA(X3, X2)  + G<(X, ,  X , )  03.9) 
where the advanced Green function CA defined in the same way as the advanced self- 
energy function CA (equation (A.14b)). Using equations (B.8) and (B.9) in equation 
(B.7) we obtain 

a 
- H O ( r l ) )  G < ( X 1  - 1 d X 3  7 X 3 ) G ' ( X 3 ,  X ? )  

(B . l l )  
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Here we have assumed that the self-energy functions as well as the Green functions 
depend only on time differences like t l  - r 3 ,  and not on t l  + t3. The integrals then 
represent convolution products in time whose Fourier transforms are simple products 
in energy. 

(ih at, - Ho(rl))  GR(XI1 X Z )  - 1 dX3 ZR(X,, X3)GR(X3, X Z )  = a4(X1 - X2). 

(B. 12) 

Equation (B. 13) is obtained by considering the component of (B.6) involving GTon the 
left, subtracting (B.7) from it and noting that GR = GT - G‘. Fourier transforming we 
obtain 

( E  - Ho(r l ) )GR( r , ,  r2 ;  E )  - I dr ,  ZR(r l ,  r3; E)GR(r3, r2 ;  E )  = 6(r l  - r2). 

Using (B.13) we can write down the solution to (B. l l )  as 

G < ( r , ,  r2;  E )  = dr ’  d r ”  GR( r l ,  r ’ ;  E )  E<(r ’ ,  r”, E)GA(r”, r2 ;  E ) .  (B.14) 

It can also be shown from (B.6) that 

a 

(B.13) 

i i  
Substituting for E< from (A.1Ob) we obtain 

GR( r l ,  r’; E)GA(r’, r 2 ;  E )  
G < ( r l ,  r2 ;  E )  = ih dr ’  J- t p  (r’ > E )  

We now set r l  = r2 = r; using equations (A. 13a) and (A.21), we have 

lGR(r, r’; E)12 
n(r; E )  = - dr’  

2n tp( r ’ ;  E )  ’ 

(B.15) 

(B.16) 

This completes our derivation of (3.2). By considering the component of the matrix 
equation, (B.6), corresponding to G’ instead of G‘ we could come up with an equation 
for the hole densityp(r; E )  instead of the electron density n(r; E ) .  Instead of (B.16) we 
obtain 

h IGR(r, r ’ ;  E)I2 
2n t,t(r’; E )  . 

p(r;  E )  = - 1 dr’  (B.17) 

Adding (B.16) and (B.17) andusing(A.17) weobtainanimportantrelationship (derived 
again in appendix C from a different approach): 

IGR(r, r’; E)12 
No(r; E )  = - dr ’  

2JG I t v ( r ’ ;  E )  (B.18) 

where No(r; E )  = n(r; E )  +p( r ;  E )  is the electronic density of states. Fourier trans- 
forming t ,  - t2 in (B.4a) and using (A.13) it can be shown that the density of states is 
also given by 

(B.19) 

Next we will derive (3.12). The current density is obtained from the off-diagonal 

No(r;  E )  = -Im(GR(r, r; E ) ) / x .  

elements of the Green function P ( r ,  r’; E )  using the relation [12] 
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-eh e2  
4nm * r = r ~  m 

(v - V ’ )  G’(r ,r’;E) - ;A(r)n(r;E) -- - (B.20) 

where V and V ’  denote gradient operations with respect to r and r’ respectively. Using 
(B.15),  (B.16) and (A .21)  we obtain from (B.20) 

where 
Js(r7 r ’ ;  E )  = j d ( r ,  r ’ ;  E )  - (e2 /m*)A(r)na(r ,  r ’ ;  E )  

n d ( r ,  r ’ ;  E )  = /GR(r, r’;  E)i2 
j , ( r ,  r’;  E )  = (-ieii/2m*) (GR(r7 r ’ ;  E)*VGR(r, r ’ ;  E )  

- GR(r, r ’ ;  E)VGR(r7 r ’ ;  E ) * ) .  

(B.21) 

( B . 2 2 ~ )  
(B.22b) 

( B . 2 2 ~ )  

Writing CR(r, r ’ ;  E )  as IGR(r, r; E)l exp(iO(r, r ’ ;  E ) )  we can show from ( B . 2 2 ~ )  that 

Using (B.23) we rewrite (B.22a) as 
j a ( r ,  r ’ ;  E )  = ns( r ,  r ’ ;  E)(e,”*)hvO(r, r ‘ ;  E) .  

J b ( r 7  r’;  E )  = n b ( r ,  r ’ ;  E)(e /m*)(hVO(r ,  r ’ ;  E )  - eA(r)) .  

(B.23) 

(B.24) 

This completes the derivation of (3.12). 

Appendix C. Derivation of some useful properties of Green functions 

Our objective in this appendix is to derive (3.4) and (3.19). We start from the defining 
equation for the retarded Green function (equation (3.3)).  

( H o ( r )  + Vop(r; E))GK(r ,  r ’ ;  E )  = EGR(r, r’; E )  - S(r - r ‘ ) .  (C.1)  
H o  is given by (2.1): 

h2V2 ieh ieii e 2 A  
H o = - 2 m *  +TA - V  + 7 ( V  2m . A )  + - 2m * + eV(r).  

It can be shown that 
( l / e ) V  *Ja(r ,  r ‘ ;  E )  = (i/h)((GR)*HoGR - GR(H,GR)*) (C.3)  

where J b  is  defined by (B.22a, 6 ,  c). Using (C.l) to substitute for HOGR in (C.3)  we 
obtain 
( I /e )V  ‘ ~ ~ ( r ,  r’;  E )  = (i/h)6(r - r ’ ) (GR(r ,  r ’ ;  E )  - GR(r, r ’ ;  E ) * )  

- (i/h) (GR(r,  r ’ ;  E)I2 (Vop(r;  E )  - V,*,(r; E ) ) .  

( l / e ) V . J a ( r 7 r ’ ; E )  = ( 2 x / h ) N o ( r ; E ) 6 ( r - - r ’ )  - / G R ( r , r ’ ; E ) / 2 / z ~ ( r ; ~ ) .  

(C.4) 

(C.5) 

Using (2.8b) and (3.3b) we write (C.4)  as 

Integrating over all volume, using the divergence theorem and assuming that the surface 
is so far away that Ja  is zero on the surface, we obtain 
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Consider (C.6) with the magnetic field B (and the current density) reversed: 

We will show that 

Using (C.8~7, b ,  c) we obtain from (C.7), 

(C.8b) 

(C.8c) 

Combining (C.6) and (C.9) we obtain (3.4). 
To prove (C.8c) we note that the electron density n(r;E) remains the same when the 

magnetic field is reversed (provided the sense of current flow is also reversed). Hence 
the scattering times t,,, zp and 

To prove (C.8a) we note that the Green function GR(r‘, r; E )  can be expanded in 
terms of the eigenfunctions +,,(r) and @,,(r) of the adjoint operators H ,  + Vop and 
H ,  + V$ respectively [23]. 

remain unaffected (see equations (2.6a,b), (3.34).  

( H ,  + V O , )  V,,(r) = &rlVfl(r) (C.1Oa) 

(Ho + v:p)@.(r) = E,* @rl(r> (C.lOb) 

(C.11) 

Taking the complex conjugate of (C.1Ob) we obtain (see equation (C.2)) 

( H d - B )  + v”p)@; ( 4  = E,,@: (r). (C. 12) 

Comparing (C.12) with (C.lOa) it is apparent that (since V,,(-B) = Vo,(B)) 

@n*(r)/-B = VN(~>IB. (C.13) 

Equation (C.8a) followsreadilyfrom (C.ll)  and(C.13). Using (B.19), weobtain (C.8b) 
from (C.8a). 

To prove (3.19), we integrate (C.5) over a volume Q not including the source at r’ 
and use the divergence theorem to write 

1 GR(r’, r; E )  l 2  
J g ( r ’ , r ; E ) * d S  = -e if r’ Q (C.14) P q r ; E )  

where S is the closed surface surrounding the volume Q. Now if r’ lies outside the contact 
i then we can apply (C.14) to a closed surface S formed by extending S ,  (figure 3) to 
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enclose the contact at infinity. Since there is no flux through the rest of the surface (see 
discussion following (3.17)), we can write 

(C .  15a) 

Again if r’ lies inside the contact i then we can extend the surface S i  so as to exclude the 
contact. We then obtain 

(C.15b) 

The additional negative sign arises because the outward going normal to the closed 
surface is now reversed with the respect to our assumed direction for Si .  

Appendix D. Derivation of the diffusion equation from the linearized kinetic equation 

In this Appendix our objective is to reduce the linear response equation (5.3) to the 
familiar diffusion equation (5.19) assuming a homogeneous medium in which the elec- 
trochemical potential varies slowly. First we note that in the homogeneous medium we 
may write (5.3) in the form of a convolution (denoted by *) 

e’ 
h 

dr ’  z ( r  - r ’ )  p ( r ’ )  3 - t ( r )  * p ( r )  

where 

t(r - r ’ )  = iT‘,qr - r ’ )  - T,(r  - r ’ ) .  

I ( q )  = ( e 2 / 4  t (4)P(4)* (D.3) 

z(q.> = r (0)  - i q l b , ) ,  - 414,(”2)1,. 

P . 2 )  

Fourier transforming ( D . l )  we obtain 

Now we expand t ( q )  in a Taylor series up to the quadratic term 

( D .  4) 

The coefficients in this expansion are given by the moments of t(r - r ’ )  in real space. 

P . 5 )  

where we have written p for r - r ’ .  Using (5.52) and (D.2) it is evident from (D.5) that 
z0 = 0. Also in the absence of magnetic fields t ( p )  = z ( - p )  (see equation (5.5b)) so 
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t h a t ( t , ) j  = 0.Theonlynon-zeroquantitiesare (z?),, = ( s 2 ) y y  = (t2)ZZ = s 2 .  Equation 
(D.3) thus reduces to 

Fourier transforming back to real space we obtain 

I(r)  = ( e 2 z 2 / h )  V 2 p ( r ) .  

Note that Z(r) is the current entering the structure through the external probes which is 
equal to divergence of the current density J ( r ) .  We thus obtain the diffusion equation 

(D.lO) v ’ J = CJV2p(r) 

where 

CJ = ( e 2 / h ) z 2  (D . l l )  
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